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Surface temperature 
change under the RCP8.5 
future climate scenario 
between 2070-2099 and 
1920-1939 averaged over 
29 different climate models

Two Sources of Uncertainty

● structural model uncertainty/disagreement 
(i.e. simulating the physics)

● internal variability
(i.e. climate noise)

Climate Change in the 21st Century: a signal-to-noise problem
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Observed 
present-day

trends

How can we tell which changes are the 
SIGNAL and which are the NOISE in our 

one observed earth?

Climate Change in the 21st Century: a signal-to-noise problem
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Train ANN to predict the year of a map
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Barnes et al. (2019; GRL)
Barnes et al. (2020; JAMES)

*Training and testing 
on CMIP5 climate 
model output
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What did the ANN learn?
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Barnes et al. (2019; GRL)
Barnes et al. (2020; JAMES)

*Training and testing 
on CMIP5 climate 
model output

ANN must learn regional signals that 
are “reliable” indicators of the year
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What to expect from ANN visualization
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Not a perfect view, but better than 
the “black box”.
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Two types of visualization tools
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Type A: Feature Visualization
Philosophy: Seek to understand all internal components of ANN.

Seek to understand the meaning of all intermediate (blue) nodes.
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Two types of visualization tools
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Type B: Attribution / Explaining Decisions
Philosophy: Understand the ANN’s overall decision making for specific input.

Seek to understand the meaning of the entire algorithm - for a specific input.
Do NOT worry about meaning of intermediate (blue) nodes.
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A visualization tool: Layerwise Relevance Propagation
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Prediction
of 1 sample

Montavon et al. (2017), Pattern Recognition; Montavon et al. (2018), Digital Signal Processing

Pr(cat)
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Pr(cat)

LRP
of 1 sample

Prediction
of 1 sample

Montavon et al. (2017), Pattern Recognition; Montavon et al. (2018), Digital Signal Processing
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A visualization tool: Layerwise Relevance Propagation
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Pr(cat)

LRP
of 1 sample

Prediction
of 1 sample

Montavon et al. (2017), Pattern Recognition; Montavon et al. (2018), Digital Signal Processing

Pr(cat)
where the network looked to 

determine it was a “cat”
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Example use of 
LRP

Task: Decide whether there is a horse in 
a given image.

Decision making strategy: use 
visualization tools to determine the 
strategy the network used to make a 
decision

14
Lapuschkin et al. (2019)
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Lapuschkin et al. (2019)

regions relevant to the 
network’s decision
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What does this mean for earth 
science research?
1. Identifying problematic strategies (i.e. right answer for 

the wrong reasons)

2. Designing the machine learning methodology

3. Building trust

4. Discovering new science!

○ When our machine learning method is capable of making a 

correct prediction we can explore why

16

LRP
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Indicators of climate change: temperature

17Barnes et al. (2020; JAMES)

Which regions are relevant for 
correctly predicting a specific year?
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Indicators of climate change: temperature

18Barnes et al. (2020; JAMES)

Year = 2015
Relevant Regions for Predicting Year from Temperature Map

Which regions are relevant for 
correctly predicting a specific year?
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Indicators of climate change: temperature

19Barnes et al. (2020; JAMES)

aerosols?
no Arctic 
signal
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Indicators of climate change: precipitation

20Barnes et al. (2020; JAMES)



Colorado State University

LRP for 
Observations
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● Largest anomalies are not 
necessarily the most reliable 
indicator regions

● ANN focuses on the Southern 
Ocean and the southern coasts 
of South America and Africa

Barnes et al. (2020; JAMES)
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Our Current 
Projects Using 

LRP

1. Indicator patterns of forced 
change

2. Multi-year prediction

3. Subseasonal-to-seasonal 
prediction

4. Eddy-mean flow interactions

5. Human impacts on the land 
surface from Landsat imagery
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Wrap-up
● The most basic of neural networks can be viewed as nonlinear regression - 

climate scientists are well-equipped to think about this architecture

● Artificial neural networks are no longer black boxes - tools exist to help 

visualize their decisions. This is a game changer for their use in geoscience 

research.

● ANNs can be used for more than just prediction. The science can be what the 
network learns, rather than the prediction. Get creative combining your 

science with these tools!
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CSU papers in this area
● Toms, Benjamin A., Elizabeth A. Barnes, and Imme Ebert-Uphoff: Physically interpretable neural networks for the geosciences: Applications to earth 

system variability, JAMES, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019MS002002.

● Barnes, E. A., J. W. Hurrell, I. Ebert-Uphoff, C. Anderson and D. Anderson: Viewing forced climate patterns through an AI Lens, Geophysical Research 

Letters, doi.org/10.1029/2019GL084944.

● Barnes, Elizabeth A., Benjamin Toms, James Hurrell, Imme Ebert-Uphoff, Chuck Anderson and David Anderson: Indicator patterns of forced change 

learned by an artificial neural network, JAMES, under review, preprint available at http://arxiv.org/abs/2005.12322.

● Toms, B., K. Kashinath, Prabhat, and D. Yang (2020), Testing the Reliability of Interpretable Neural Networks in Geoscience Using the Madden-Julian 

Oscillation, Submitted to Geophysical Model Development (GMD), Preprint available: https://arxiv.org/abs/1902.04621.

● Ebert-Uphoff, I., & Hilburn, K. A. (2020). Evaluation, Tuning and Interpretation of Neural Networks for Meteorological Applications. Submitted to 

Bulletin of the American Meteorological Society (in review). Preprint available: https://arxiv.org/abs/2005.03126

● Lapuschkin et al. “Unmasking Clever Hans Predictors and Assessing What Machines Really Learn.” Nature Communications, vol. 10, no. 1, Mar. 

2019, p. 1096, doi:10.1038/s41467-019-08987-4.

● Ebert-Uphoff, Imme, Savini Samarasinghe, and Elizabeth A. Barnes: Thoughtfully Using Artificial Intelligence in Earth Science, EOS, 100, 

https://doi.org/10.1029/2019EO135235.
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LRP Example Propagation Rules
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